
Control System Design Using LabVIEW Object Oriented Programming (LVOOP)
 D. Beck and H. Brand

 GSI, Planckstr. 1, D-64291 Darmstadt, Germany

Further reading:
[1] http://zone.ni.com/devzone/cda/tut/p/id/3574, “LVOOP, The Decisions Behind the Design”.

[2] http://wiki.gsi.de/cgi-bin/view/NIUser/LabVIEWObjectOrientedProgramming.

[3] http://www.cern.ch/dim.

[4] http://wiki.gsi.de/cgi-bin/view/CSframework.

Conclusion
Pros: Memory management within LVOOP is well done, very fast access to even large (> 10MB) of data. ”Class independent” wires and override methods allow for

programming simple but efficient code. Creating more than thousands of device objects (corresponds to thousands of physical devices per PC) is no problem.

Cons: Need to (re)invent design patterns for “Dataflow” paradigm. Override methods can’t be executed in parallel (solved in LabVIEW 8.5). Danger, if objects

contain references! Is LVOOP suitable for a large fraction of the LabVIEW community?

Features (Pros or Cons?): No multiple inheritance. Override methods must have exactly the same parameters as the base class. LVOOP is a consequent application

of OO techniques to the “Dataflow” paradigm.

Introduction
There are fundamental differences between LabVIEW and text-based languages: Concept of “Dataflow”.

! data type characterized by type of wire

! data “flow” from source to drain

! data have no defined life time

! data are always “by value”

 Þ “classical” VARIABLES DON’T EXIST!

! a “wire fork” duplicates the data

Þ The value on each wire is independent from every other wire - natural parallelism.

Þ LabVIEW is inherently thread-safe!

atad ypoc
parallel execution

atad ypoc

LabVIEW Object Oriented Programming (LVOOP) strictly follows the paradigm of “Dataflow”.

! A class in LVOOP is only a type of data together with methods operating on the data/objects.

In other words: LVOOP provides “object oriented wire types” including inheritance.

! An object in LVOOP is nothing more than data flowing through a wire - no agents.

! class characterized by type of wire, typecasting is allowed

! objects “flow” from source to drain

! objects have no defined life time, ...,

 Þ CONSTRUCTORS AND DESTRUCTORS DON’T EXIST!!!

! a “wire fork” duplicates an object

! Objects can never be addressed “by reference”.

! Member attributes can only be accessed/modified by its class methods - strict encapsulation.

Þ Well known OO design patterns must be (re-)invented!

Factory Pattern
Problem: How to dynamically create an object of any class without a constructor?

Solution: “Factory Pattern”.

Implementation:

method “objectFactory”

s”

m
Cy

las

tc of “

t o.
jeb

co sn

override method “Classes” of “myFactory”

usage of “objectFactory”

c s b M aon t. o ject of “CSOO F ctory”

override method “initialize” of “myClass”

abstract method, call
“initialize” of direct parent

Reference Pattern
Problem: How can an object be accessed from different threads or computer nodes?

Solution: An object flows into a unique resource like a “message queue” or a TCP/IP connection.

Implementation: ”Reference Pattern”: Only one thread can use the object, the other thread has to wait...

thread 1

thread 2

Design Study CSOOMM
CS Framework Þsimplification CS-- write as CSMM use OO techniques CSOOMM pronounce “Zoom”Þ Þ Þ Þ Þ Þ Þ

Main Requirements

! Create objects dynamically (”Factory Pattern” + object management).

! Multi-threaded applications (“Reference Pattern”).

! Support distributed control systems (DIM as communication layer).

!

Implementation

Simple!

LVObj
base class LVOOP

Factory
create/destroy objects
init/deinit objects

gsiBase
provide basic function-
ality

dimProcessor
provide methods required
for communication via DIM

PSChannelBase
base class for a power
supply with one or more
channels

myPowerSupply
provides functionality
specific for my power
supply

Object ManagementDynamically Create Objects

one set of commands
and services for each
object

actual (read back) values

nominal (set) values

list of commands

setVoltage, 1st param. is
channel, 2nd par is value

list of objects (not shown)

Class Independent Thread for Handling DIM Commands

sd
mc

MI
D 4 tia

w

checkout object checkin object

l

 s
c f

cal class
pe

i ic

o

etho

verride m

d

e for b c in e it gwir o je ts h r in
f o im o e o c ssr m d Pr c ss r la
(p c st d la)ty e a e c ss

abstract method

(+ similar thread for handling of updated DIM services)

get ref. of object

	Seite1

